

Tetrahedron Letters 41 (2000) 7525-7528

TETRAHEDRON LETTERS

Reactions of acylzirconocene chloride with nucleophiles: bimodal reactivity at β - and acyl carbons of α , β -unsaturated acylzirconocene chloride

Yuji Hanzawa,* Kensuke Narita, Akito Kaku-uchi and Takeo Taguchi*

School of Pharmacy, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan

Received 3 July 2000; revised 21 July 2000; accepted 24 July 2000

Abstract

Reactions of α , β -unsaturated acylzirconocene chloride with nucleophiles showed novel bimodal reactivity at the β - and acyl carbons depending upon the nucleophile employed, and the formation of ketone α , β -dianionic species was also observed. \bigcirc 2000 Elsevier Science Ltd. All rights reserved.

Keywords: acylzirconocene chloride; ketone α,β-dianion; metallacycles; Michael additions; cuprate.

Recent studies on the reactivity of acylzirconocene chloride derivatives (1 and 2) indicated their usefulness as an 'unmasked' acyl anion donor in organic synthesis.¹ Herein we report the reactions of α , β -unsaturated acylzirconocene chloride 2 with nucleophiles and the bimodal (nucleophilic or electrophilic) reactivity at both the acyl and β -carbons in 2 (Fig. 1).

Reactions of 2 with stable carbon nucleophiles (sodium salt of dimethyl malonate and malononitrile) at 0° C in THF afforded Michael addition products 4 in good yields (Eq. (1))

$$\begin{array}{c} \beta & 0 \\ R^{1} & \ddots & ZrCp_{2}Cl \\ \hline & & & \\ Acylzirconocene \\ chloride \\ 1 = saturated \\ 2 = \alpha,\beta-unsaturated \\ 2 & \frac{1)}{2} \underset{C}{\text{El}} R^{1} & \stackrel{Nu}{\hookrightarrow} \underset{C}{\text{El}} \left(\begin{array}{c} \alpha & 0 \\ R^{1} & 0 \\ \hline & \alpha \end{array} \right) \text{ or } R^{1} & \stackrel{El}{\hookrightarrow} \underset{C}{\text{Nu}} \left(\begin{array}{c} \alpha & 0 \\ R^{1} & 0 \\ \hline & \alpha \end{array} \right)$$

Figure 1. Electronic duality of α , β -unsaturated acylzirconocene chloride 2

^{*} Corresponding authors. Tel: +81 426 76 3274; fax: +81 426 76 3257; e-mail: hanzaway@ps.toyaku.ac.jp

^{0040-4039/00/\$ -} see front matter @ 2000 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(00)01291-0

(entries 1–5, Table 1).² Direct treatment of the intermediate **3** with allyl bromide in the presence of a catalytic amount of CuI·2LiCl (10 mol%) at 0°C gave allylic ketone **5** in one-pot (Eq. (1)) (entries 6–8, Table 1).^{3,4} In the reaction of **2a** with dimethyl malonate anion, D₂O-work-up gave α -deuterated deutero aldehyde **6** in 88% yield (>95 D%). The transformation of **2** into **5** implies that the electronic nature of **2** is to be **A** shown in Fig. 1.

$$R^{1} \xrightarrow{O}_{Z_{T}CP_{2}} \xrightarrow{C}_{C} \underbrace{CX_{2}R^{2}}_{CI} \left[\begin{array}{c} R^{2}CX_{2} & O^{\Theta} \\ R^{1} \xrightarrow{Z_{T}CP_{2}} \\ 2 \\ CI \\ a: R^{1} = Ph(CH_{2})_{2} \\ b: R^{1} = n-C_{4}H_{9} \end{array} \right] \xrightarrow{H_{2}O}_{CI} \begin{array}{c} R^{2}CX_{2} \\ R^{1} \xrightarrow{C} CHO \\ R$$

Table 1

Reactions of **2** with stable carbon nucleophiles and the subsequent Cu(I)-catalyzed coupling reaction with allyl bromide^a

Entry	2	Nucleophile		Yield (%) ^b	
		$\overline{\mathbf{R}^2}$	Х	4	5
1	2a	Н	COOCH ₃	88	
2	2a	CH ₃	COOCH ₃	84	
3	2b	Н	COOCH ₃	81	
4	2b	CH ₃	COOCH ₃	72	
5	2b	H	CN	52	
6	2a	Н	COOCH ₃		81
7	2b	Н	COOCH ₃		75
8	2b	CH ₃	COOCH ₃		68

^a Reaction conditions for the formation of 4:2 1.5 equiv.; NAH (1.1–1.5 equiv.); R^2CHX_2 (1 equiv.); $0^{\circ}C$, 2 h. Reaction conditions for 5:2 1.5 equiv.: (i) NaH (1.1–1.5 equiv.); R^2CHX_2 (1 equiv.); $0^{\circ}C$, 2 h and (ii) CuI·2LiCl (10 mol%), allyl bromide (1.3 equiv.) $0^{\circ}C$, 1 h.

^b Isolated yield.

However, the reaction of **2** with a higher-order cyanocuprate reagent,⁵ R₂Cu(CN)Li₂, at -78° C in THF afforded, contrary to our expectation, saturated ketone **7** by aqueous work-up (Eq. (2)). No trace of a Michael addition product was observed in the reaction mixture. In the reaction of **2a** and (CH₃)₂Cu(CN)Li₂, D₂O treatment of the reaction mixture gave α , β -diducter-ated ketone **8** (the undetermined stereochemistry) in 69% yield, and the deuterium content at each position was over 95%. The formation of **8** suggests the presence of ketone α , β -dianion equivalent⁶ from **2** under the reaction conditions. An addition of an excess of organic halides to the reaction mixture, which is derived from **2a**, (CH₃)₂Cu(CN)Li₂ and CH₃I, afforded α -deuterated **10** in 65% yield (Eq. (2)). Attempts to react the α -carbanion with electrophiles, however, ended with synthetically little success.⁷ The results of the reactions of **2a** with higher-order cyanocuprate and the following reaction with organic halides are shown in Table 2.

The facts that (i) the reaction of saturated acylzirconocene chloride 1a with $(CH_3)_2Cu(CN)Li_2$ gave alcohol 12 (73%), and (ii) D_2O work-up of the reaction gave d-12 suggest the formation of

Table 2 The formation of **9** by the treatment of **2a** with $R_2Cu(CN)Li_2$ and R^2I^a

Entry	R ² X	R	9 Yield (%) ^b
1	CH ₃ I	CH ₃	68
2	allyl chloride	CH ₃	71
3	Propargyl chloride	CH ₃	22°
4	PhCOCI	CH ₃	68
5	CH ₃ COCl	CH ₃	46
6	2-Naphthoyl chloride	$n-C_4H_9$	50

^a Reaction conditions: **2a** 1.5 equiv., $R_2Cu(CN)Li_2$ (2.0 equiv.) in THF, $-78^{\circ}C$, 0.5 h then R^2X (3 equiv.) $-78^{\circ}C$, 0.5 h.

^b Isolated yield.

^c Allenyl product.

ketone–zirconocene intermediate 11 (Eq. (3)).⁸ Thus, in the case of 2, oxazirconacyclopentene 14,⁹ a ketone α,β -dianion equivalent, would be formed through the formation of unsaturated ketone–zirconocene complex 13 followed by 1,3-rearrangement of the zirconocene moiety (Eq. (4)). Although the intermediate 14 proved difficult to isolate and characterize,¹⁰ the 1,3-rearrangement of the zirconocene portion in the nitrogen analogue of 11 has been well established in the formation of zirconaazacycle, the nitrogen analogue of 14.^{9b} The formation of ketone 15 or d₂-15 (Eq. (5)) by the reaction of saturated acylzirconocene chloride 1a with higher-order vinyl cyanocupurate would support the postulated process.

In the present reactions of 2 with nucleophiles, the dichotomous reactivity (A and B in Fig. 1) at both the β - and acyl carbons in 2 was brought about by our choice of nucleophilic reagents (stable carbon nucleophiles or R₂Cu(CN)Li₂).

$$2 \xrightarrow{R_2Cu(CN)Li_2} \left[\begin{array}{c} R & O & 1,3-\\ rearrangement & Cp_2Zr-O \\ ZrCp_2 & R^1 & R \end{array} \right] \longrightarrow 7$$

$$(4)$$

$$\mathbf{1a} \xrightarrow{(\overset{\frown}{}_{2}^{2}Cu(CN)Li_{2}} \begin{bmatrix} 0 & ZrCp_{2} & 0 & ZrCp_{2} \\ R^{1} & & & & & \\ R^{1} & & & \\$$

In summary, we have shown that an electronic nature at the β - and acyl carbons of the α , β -unsaturated acylzirconocene chloride **2** depends on the employed nucleophile. Generation of the ketone α , β -dianion species, oxazirconacyclopentene derivative **14**, through the reaction of α , β -unsaturated acylzirconocene chloride **2** with R₂Cu(CN)Li₂ and the efficient reaction of **14** toward electrophiles has opened up a new synthetic possibility of the acylzirconocene complex.

Preparation of **9**: To a solution of **2a** (2.0 mmol) in THF (5 mL) [prepared by (i) stirring with Cp₂Zr(H)Cl (1.3 mmol) and 4-phenyl-1-butyne (2.1 mmol) in CH₂Cl₂ (4 mL) at ambient temperature for 0.5 h, (ii) stirring under CO atmosphere (1 atm) for 2 h and (iii) concentration to dryness in vacuo and addition of THF (5 mL)] was added a solution of (CH₃)₂Cu(CN)Li₂ (4 mmol) in THF–ether (8: 5) (13 mL) at -78° C. After the mixture was stirred for 0.5 h at the same temperature, CH₃I (6 mmol) was added and the stirring was continued for 0.5 h at -78° C. The reaction was quenched by the addition of sat. aq. NH₄Cl and extracted with ether. After the usual procedures, the crude material was purified by silica gel column chromatography (hexane:ethyl acetate = 80:1) to give **9** [R¹ = Ph(CH₂)₂, R² = CH₃, R = CH₃] (68%).

References

- (a) Harada, S.; Taguchi, T.; Tabuchi, N.; Narita, K.; Hanzawa, Y. Angew. Chem. Int. Ed. Engl. 1998, 37, 1696.
 (b) Hanzawa, Y.; Tabuchi, N.; Taguchi, T. Tetrahedron Lett. 1998, 39, 6249.
 (c) Hanzawa, Y.; Tabuchi, N.; Taguchi, T. Tetrahedron Lett. 1998, 39, 6249.
 (c) Hanzawa, Y.; Tabuchi, N.; Taguchi, T. Tetrahedron Lett. 1998, 39, 8141.
 (d) Hanzawa, Y.; Tabuchi, N.; Saito, K.; Noguchi, S.; Taguchi, T. Angew. Chem. Int. Ed. Engl. 1999, 38, 2395.
- Michael addition reaction of lithium amide to α,β-unsaturated acyliron complex has been reported; Davis, S. G.; Garrido, N. M.; McGee, P. A.; Shilvock, J. P. J. Chem. Soc., Perkin Trans. 1 1999, 3105.
- 3. According to Grubbs' report, the formation of ketene–Zr complex as an intermediate through the intramolecular substitution of the chloride on zirconocene species 2 with enolate oxygen might be possible: Waymouth, R. M.; Santarsiero, B. D.; Coots, R. J.; Bronikowski, M. J.; Grubbs, R. H. J. Am. Chem. Soc. 1986, 108, 1427 and the references cited therein. A clear NMR spectrum of the intermediate could not be obtained.
- Transmetalation from Zr to Cu, see Xi, C.; Kotora, M.; Takahashi, T. *Tetrahedron Lett.* 1999, 40, 2375 and the references cited therein. See also the Cu(I)-catalyzed cross-coupling reaction of acylzirconocene complexes; Hanzawa, Y.; Narita, K.; Taguchi, T. *Tetrahedron Lett.* 2000, 41, 109.
- For reviews, see: (a) Lipshutz, B. H. Synthesis 1987, 325. (b) Lipshutz, B. H.; Wilhelm, R. S.; Kozlowski, J. A. Tetrahedron 1984, 40, 5005. Other organometallic reagents (MeLi, Me₂CuLi and MeMgBr) gave lower yield (35%) of 6 or a complex mixture (Grignard reagent).
- 6. (a) Ryu, I.; Nakahira, H.; Ikebe, M.; Sonoda, N.; Yamato, S.; Komatsu, M. J. Am. Chem. Soc. 2000, 122, 1219.
 (b) Nakahira, H.; Ryu, I.; Ikebe, M.; Kambe, N.; Sonoda, N. Angew. Chem. Int. Ed. Engl. 1991, 30, 177.
- 7. The reaction of **2** with Me₂Cu(CN)Li₂ followed by the addition of MeI and HCHO (gas) afforded a low yield (~10%) of α -hydoxymethyl, β -methyl ketone.
- The reaction of acylzirconocene chloride with Al(CH₃)₃ has been reported to give ketone-zirconocene complex: Waymouth, R. M.; Grubbs, R. H. Organometallics 1988, 7, 1631. We were unable to prove the structure of 11 by a spectroscopic method probably due to the presence of an excess of cuprate reagent.
- Preparation and reactions of an azaanalogue of 14, zirconaazacycle, have been reported; (a) Enders, D.; Kroll, M.; Raabe, G.; Runsink, J. Angew. Chem. Int. Ed. Engl. 1998, 37, 1673. (b) Davis, J. M.; Whitby, R. J.; Jaxa-Chamiec, A. J. Chem. Soc., Chem. Commun. 1991, 1743. (c) Scholz, J.; Nolte, M.; Krüger, C. Chem. Ber. 1993, 126, 803.
- 10. Titanocene analogue of **14** has been reported to be impossible to characterize because of its instability, see Ref. (9b).